
www.manaraa.com

What future for the Distributed Systems Annex?

Laurent PAUTET Samuel TARDIEU

{Laurent.Pautet,Samuel.Tardieu}@enst.fr
École Nationale Supérieure des Télécommunications

Département Informatique et Réseaux
46, rue Barrault

F-75634 Paris Cedex 13, France

Abstract

In this paper, we report our experience as implementors and users
of the Ada 95 Distributed Systems Annex (annex E of the Ada
reference manual). We identify the principal strengths andweak-
nesses of the annex, and make some proposals to improve it either
immediately or for the next revision of the language (Ada0X). Our
goal is to get an annex that is more open and compatible with other
distributed systems such as CORBA, without loosing the capability
of developing pure Ada rock solid distributed systems.

We assume that the reader is familiar with Ada. Knowledge of
the Distributed Systems Annex is useful but not required to under-
stand the main ideas exposed in this article.

1 The Distributed Systems Annex today

A few years ago, distributed systems were mainly used by teams
with very special needs in terms of processing power or reliability,
or for teaching the basis of distributed programming. Today, be-
cause of the dramatic growth of the Internet and the development
of high speed networks, more and more people are becoming famil-
iar with distributed computing. It has become quite common and
well accepted to have a part of a computation done locally while
the rest is being done on a server located far away. For example,
theSETI@home project is dedicated to finding extraterrestrial in-
telligence signs in the universe. To achieve its goal, it uses a giant
distributed system whose nodes are personal computers withspare
CPU cycles that now look for patterns in a huge set of data collected
by radio telescopes [4].

The architects of Ada 95 [11] had foreseen this increasing inter-
est in distributed systems. They chose to add a Distributed Systems
Annex (DSA in short) in the latest language revision [8]. This an-
nex, while still fully consistent with the rest of the language, defines
how subprograms can be called remotely, and how complex data
structures such as pointers on remote objects and remote subpro-
grams can be built and used. However, unlike foreign distributed
architectures such as CORBA, those facilities preserve thestrong
type checking and the safety features of the Ada programminglan-
guage.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGAda’99 10/99 Redondo Beach, CA, USA
c1999 ACM 1-58113-127-5/99/0010...$5.00

1.1 Existing implementations

Two implementations of the DSA are available at the time of writ-
ing, targeting the freely available GNAT Ada compiler:

1. GLADE (GNAT Library for Ada Distributed Execution), de-
veloped and maintained jointly by the ENST1 and by Ada
Core Technologies2. This implementation is freely available
under the same license as GNAT, and commercial support is
available through Ada Core Technologies. It includes a par-
titioning tool calledgnatdist [14], and a partition communi-
cation subsystem calledgarlic (GNAT Ada Reusable Library
for Interpartition Communication) [15].

2. ADEPT (Ada 95 Distributed Execution and Partitioning
Toolset) has originally started as a joint project between Com-
puter Sciences Corporation3, the Texas A&M university4 and
the ENST. It is based on an early implementation of GLADE
[9], and has since then evolved into a bridge between Ada
and RMI (see section 3.2). It is now maintained by the Texas
A&M university.

1.2 Typical uses of the DSA

Since Ada is a general purpose programming language, distributed
systems in Ada can be used potentially in every domain of com-
puter science. This section describes some projects using the DSA;
it is based on publicly available information available through pub-
lic newsgroups and mailing lists.

1.2.1 Industry

GLADE has been successfully used by several major companies,
both in the US and in Europe. Of course, the acceptance of the
distributed features of the language is bound to the acceptance of
Ada 95 itself, and many industrial companies are still usingAda 83,
even when compiling with an Ada 95 compiler. However, new
projects and major revisions of existing products are now using
Ada 95 and its new concepts, such as tagged types and protected
types. At the same time, they do evaluate the DSA to see whether
it meets their needs in terms of distributed systems.

EDF, the most important electricity provider in France, has
been building a prototype of a WWW session-tracker using the
DSA. The goal is to keep a link between separate requests madeby
the same user to a WWW server. This company is also considering
using the DSA as a caching proxy for database requests; if a request
has already been performed in the past and if the database hasnot

1http://www.enst.fr/
2http://www.gnat.com/ andhttp://www.act-europe.fr/
3http://www.csc.com/
4http://www.tamu.edu/

77

www.manaraa.com

been updated in the meantime, the previously computed result will
be sent back to the user, thus avoiding unnecessary processing on
the database server side.

1.2.2 Military

Most military projects using distributed systems written in Ada had
their own communication layer, around which the whole program
was designed. This has been made unnecessary with the DSA,
whose goal is to let the program architect design her distributed
program almost without thinking at the distribution issues. Remote
subprogram calls and distributed objects integrate very well with a
monolithic design. DSA could be used only as a communication
layer that would replace the existing one, but the gain will be too
low for such a task. It is thus often difficult to fully move to the
DSA without rethinking the whole program architecture. However,
GLADE is starting to show up in new developments, in particular
when distributed simulations are involved.

RTI interface RTI interface

RTI API

DSA bridge DSA bridge

DSA

RTI API

RTI application RTI application

Figure 1: Using DSA as a communication layer

For example, modern distributed interactive simulations use a
standardized API called RTI (Run Time Infrastructure). This API
can be called from any language, such as Ada or C++. Using
RTI, one can connect flight simulators used by human pilots and
computer-driven simulation programs, some of them writtenin C,
others in C++ and others in Ada. One implementation of RTI has
been developed in Ada and uses the DSA as a communication layer
[3]. The DSA is hidden to the RTI programmer, who only needs to
use the RTI API, but it takes care of all the communication between
RTI nodes, as shown on figure 1.

1.2.3 Education

Ada 83 has been used for years in software engineering classes,
because of its high-level features such as genericity, strong-typing,
encapsulation and tasking. The fact that an Ada compiler catches
most errors at compile time makes it much easier for studentsto
concentrate on the real problem rather than on a trivial mistake un-
caught by a C compiler.

Ada 95 extends the power of Ada 83 to object oriented and dis-
tributed programming. From our own teaching experience, students
enjoy using it when learning the basis of distributed programming
(remote subprogram calls, distributed objects) because ofits ease
of use and its integration in a consistent model. For example, our
students have been able to develop a complete multi-users messag-
ing system based on distributed objects in a few hours. It would

probably have taken much more time if they had had to cope with
raw sockets and message passing.

2 Weaknesses of the current model

In this section, we present the main weaknesses of the DSA in its
current form. We expect that those defects will not be present in
the next Ada standard; some proposals to fix them and to increase
the capabilities of the DSA are given in section 3.

2.1 Interoperability between Ada compilers

The design team of the DSA chose to separate the compiler
from the PCS (Partition Communication Subsystem); the PCS has
only a few entry points located in a standardized package called
System.RPC, and those entry points must be the only interface
between the code generated by the compiler and the PCS. It is thus
theoretically possible to plug any PCS into any DSA-capablecom-
piler5.

Data exchanged between the compiler and the PCS are encap-
sulated into Ada streams; the PCS is not supposed to interpret their
contents and must manipulate them as opaque data. This raises two
major problems:

1. The content of Ada streams is not normalized: for example,
one compiler can choose to store an integer in a stream as it
is stored in memory, while another will use another format
such as XDR (eXternal Data Representation) [26]. This pre-
vents an Ada compiler from reading what has been stored by
another, unless they agree on a common format for streams
content.

2. The data stored in the streams given to the PCS is unspecified.
One compiler can choose, to designate a remote subprogram,
to use a package name followed by a subprogram index, while
another can use a package index and a subprogram index to
mean the same thing. Once again, Ada compilers would have
to agree on a common protocol to be able to communicate
with each other.

Even using a compiler from the same vendor on heterogeneous
systems does not guarantee that your computers will understand
each other, as the DSA does not require that heterogeneous systems
be supported.

2.2 Interoperability with other languages

Unlike the DSA, which has been designed to write pure Ada dis-
tributed programs, CORBA [19] allows parts of a distributedsys-
tem to be written using different programming languages. Each
part is made of one or more objects, whose interfaces are de-
scribed using the Interface Description Language (IDL). A stub
and a skeleton will be generated from an interface. The stub is
used to perform outgoing method calls to a remote object, while
the skeleton handles incoming requests and redirects them to the
actual implementation of the object methods. While the skeleton is
generated for the language in which the object implementation has
been written, the stub can be generated for many other program-
ming languages (Ada, C, C++, Java, Lisp, etc.). It is thus possible
to access a remote object from programs written in another pro-
gramming language, as shown on figure 2 (the Dynamic Invocation
box can be ignored and will be explained later).

The multi-language characteristics of CORBA played an im-
portant role in its wide acceptance: a team of developers canchoose
its favorite programming language to implement a service, and have

5A validated Ada compiler does not need to be DSA capable as theDSA is an
optional annex.

78

www.manaraa.com

User

Generated

CORBA Bus (inter ORB communication)

Dynamic

Invocation

IDL

Stubs Interface

ORB IDL

Skeleton Adapter

Object

(language B)
Object Implementation

IDL specification

Client
(language A)

Figure 2: Global CORBA architecture

another team use its own favorite language to access it. As far as
interoperability is concerned, the DSA completely missed the train;
the interfacing capabilities of Ada 95 compared to Ada 83 (pragma
Import, access to subprograms with foreign conventions) have not
shown up in annex E.

On the one hand, the lack of normalization of the protocol used
to communicate between the partitions of a distributed Ada pro-
gram forbids the development of any portable binding with remote
Ada services. On the other hand, this allows distributed Adapro-
grams to avoid costly constraint checks as the strong typingis pre-
served all the path along, while an interface with foreign languages
would require additional checks to ensure the validity of externally
acquired data.

This led to a situation where people have developed two-headed
distributed programs: every data exchange between two Ada par-
titions is made through the DSA, while CORBA is used to export
Ada services to the outside world (a concrete application can be
found in [18]). However, this way of doing things is costly because
two different interfaces (Ada and CORBA) need to be maintained
at the same time. Also, it is error-prone, as a mismatch between
the two versions may result into incorrect programs. We propose a
solution to this particular problem in section 3.3.

Another solution commonly found to extend access to Ada re-
mote objects to foreign languages is the design of small wrappers
that translate a proprietary protocol into calls to the distributed ob-
jects (see figure 3). However, this solution has the same mainte-
nance problems as the one exposed below, as two consistent inter-
faces must be maintained at the same time.

U
si

ng
 th

e
D

S
A

Ada 95 glue code

N
et

w
or

k

A
da

 9
5

co
de

C
 c

od
e

M
ac

hi
ne

 A
M

ac
hi

ne
 B

Figure 3: Using a proxy to access DSA services

2.3 Termination of a distributed application

Since 1980, we know that terminating a distributed application is
not a trivial issue [7, 6]. To summarize the problem, an application
can be globally terminated only when all the partitions are locally
ready to terminate and there is no message in transit on the network
that can potentially wake up one of the partitions [17].

79

www.manaraa.com

However, an Ada distributed application can be composed of a
dynamic number of partitions; when using a client/server model,
the number of partitions that will compose the distributed program
is not known in advance. A server cannot guess whether a new
client is going to connect or not. The situation is similar tothe one
where tasks could be created spontaneously in a non-distributed
program: even if all the tasks were waiting on aselect statement
with aterminate alternative, should the program be terminated
if a new task showed up spontaneously and tried to wake up one of
those existing tasks?

The reference manual does not contain anything about termi-
nation of distributed applications. As a direct consequence, it does
not define whether it is erroneous or not to connect a new partition
to a globally ready to terminate distributed system. This particular
point deserves to be specified in the reference manual.

3 Some proposals to extend the DSA

In this section, we propose extensions that fall in two categories:
the first category contains proposals that can be adopted forthe
current language revision if all Ada vendor agree on their realiza-
tion. The second one contains proposals to be adopted for thenext
Ada revision.

3.1 Normalization of layers

The DSA can be decomposed into three independent layers: a
high-level one, in charge of the semantics of the DSA, a mid-level
one, which defines the communication between compiler generated
code and the PCS, and a low-level one, which represents the under-
lying communication protocol.

3.1.1 The high-level layer

This layer contains the whole spirit of the DSA; it con-
sists into the description, at the Ada language level, of what
can be distributed and the semantics of every remote oper-
ation. The three categorization pragmas solely dedicated to
the DSA (Remote_Call_Interface, Remote_Types and
Shared_Passive) open a large and consistent set of possibili-
ties to distribute Ada entities, objects or subprograms.

This layer has been carefully thought and leads to powerful con-
structs; for example, CORBA only deals with distributed objects,
while the DSA also deals with remote subprogram calls in a tradi-
tional way. It also acts as a hidden naming service used to silently
locate remote subprograms.

However, the set of entities that can be used remotely could be
slightly enlarged by introducing the notion of remote rendez-vous
for example. This would require allowing a task declarationin the
visible part of aRemote_Call_Interface package, as well as
remote accesses to task types and objects. Of course, appropriate
restrictions must be placed on types of entry parameters, just as
those restrictions exist for remote subprograms.

3.1.2 The mid-level layer

What we call the mid-level layer here is the declaration of the
System.RPC package. As written in section 2.1, the design
team of the DSA was willing to ensure a compatibility between
any DSA-capable compiler and any PCS through this standardized
package.

While this definition allowed us to start quickly the implemen-
tation of GLADE because one part of the design was implicitly
contained in the annex, we soon realized that the requirement to
go throughSystem.RPC for every remote call introduces a lot of
constraints.

To take one example, the only non-opaque parameter given to
the procedure used to do a remote subprogram call (Do_RPC) is an
integer denoting the remote partition. That implies that one of the
two following methods is used:

1. This integer is assigned at partitioning time and the system
is closed and static (it is not easy to add new clients in a
client/server architecture after the first partitioning step while
the server is running, and also not easy to launch several in-
stances of a single client as they will have different identi-
fiers).

2. This integer is computed at run time, and the compiler
must have a way of retrieving it by talking to the parti-
tion communication subsystem using another interface than
System.RPC, which defeats the capability of using the PCS
with another Ada compiler.

After careful thoughts, we deliberately chose to use
the second method and implemented a new package named
System.Partition_Interface. This package contains all
the needed subprograms to exchange localization information be-
tween generated code and the PCS. As a consequence, it is not pos-
sible for another compiler to use GLADE without generating calls
to this new package.

After several years of experience in maintaining GLADE, we
now firmly believe that the standardization of the PCS interface is
useless and should be removed from the next language revision.
Moreover, it is the only case in the reference manual where some-
thing that can be considered internal to the compiler has been de-
scribed in an authoritative way.

3.1.3 The low-level layer

This part does not belong to the DSA. This is the cause of all the
trouble described in sections 2.1 and 2.2. A standardization of the
communication protocol would open the road to interoperability
with other systems, either written in Ada (and thus using theDSA
themselves) or in foreign languages, using easy-to-use communi-
cation libraries.

Using a clearly defined protocol does not cause any safety and
efficiency loss, as long as the whole program is written in Ada.
However, interfacing with other languages less safe than Ada may
require the generation of additional checks to ensure that the ex-
ternally acquired data meet Ada strong-typing constraints. Those
checks could be turned on either by a pragma placed in the declara-
tion of the remote package, meaning that even Ada programs would
suffer a performance loss, or by a special flag in each packet indi-
cating whether this packet is considered safe (from an Ada point of
view) or not.

A proposal for such a low-level protocol is in progress, but is
out of the scope of this paper. We plan to implement it for GNAT
and GLADE, for compilers generating processor-specific code and
for the future GNAT to JVM (Java Virtual Machine) compiler. This
would, amongst other things, allow some partitions of a distributed
system to run in native form (typically server partitions) while some
others would run on a Java virtual machine (e.g., client applets in a
WWW browser).

3.2 Interfacing with RMI

RMI (Remote Method Invocation) is yet another way of writingdis-
tributed applications, using the Java programming language. This
alternative to CORBA offers the possibility of having objects lo-
cated on different hosts communicate with each other, and also lets
objects with their implementation (in Java byte code) move from
one host to another. This very powerful feature calledcode migra-
tion is a big step towards the development of mobile agents.

80

www.manaraa.com

RMI is very interesting for Ada users from several point of
views:� Compilers that compile Ada code into Java byte code can use

RMI objects and libraries to build distributed applications.� A bridge between the DSA and RMI is already fully func-
tional (ADEPT, see section 1.1) and allows Java users to ac-
cess Ada services.� Sun Microsystems (author of Java and RMI) is working with
the OMG (Object Management Group, the entity in charge
of CORBA normalization), to use IIOP (Internet Inter-ORB
Protocol) as a basis for RMI implementation, while IIOP will
be extended to support the full semantics of RMI. That means
that Ada code compiled into Java byte code and using RMI
will be able to talk with services written with CORBA, and
that the Ada/RMI bridge will be usable as a gate between the
DSA and CORBA

3.3 Interfacing with CORBA

As written in section 2.2, nothing prevents a user from maintain-
ing two consistent interfaces for a service, one for the Ada side of
the world using the DSA and a second for the other languages using
CORBA, although this is a painful and error-prone task. In this sec-
tion, we will see that other methods can be used to interface DSA
and CORBA. As far as distributed objects are concerned, Ada and
CORBA are close from each other. The differences and similarities
between them have been studied in [24] and [21]. Comparisons
from a designer’s point of view have been published in [20] and
[13].

3.3.1 Exporting DSA services to CORBA

An ongoing project is the automatic translation of DSA services
into CORBA specifications so that those services can be used from
a CORBA node [22]. Packages categorized asRemote_Types or
Remote_Call_Interface are analyzed using ASIS (Ada Se-
mantic Interface Specification) [12], and the semantic information
is then utilized to generate one or more IDL modules; the imple-
mentation of each module is also produced automatically. Incom-
ing CORBA calls to DSA objects are automatically transformed
into outgoing DSA calls.

The first version of this tool called CIAO (CORBA Interface
for Ada (DSA) Objects) [23] is using exclusively the free software
OmniORB2 CORBA product. The gate between OmniORB2 and
GNAT has been developed as a separate project [1] and can be used
independently.

3.3.2 Using a common protocol

We are currently investigating the use of IIOP as the basis ofour
low-level protocol, to ease the interfacing process between the
DSA, CORBA and RMI. The basic idea behind this is effort split-
ting: implementing a tasking runtime requires a lot of resources
from Ada compilers vendors, and so does the implementation of
the DSA. If some of the costs could be shared by the CORBA and
RMI vendors, there would probably be more implementations of
the DSA, as the existing infrastructure could be reused easily.

We already have a full Ada ORB implementation [10], soon
to be released as free software. This software, whose code name
is Broca, will serve as a basis for both our free software CORBA
product, AdaBroker, and a future version of GLADE that will be
using IIOP.

Using IIOP as the standard protocol for the DSA would al-
low accessing CORBA and RMI services directly through the DSA

without any need for an additional bridge. Also, it would be pos-
sible, using an Ada to Java byte code compiler, to transfer active
objects and achieve code migration in Ada using only the DSA.
This would be a big step forward in terms of fault tolerance and
reliability, as critical services could duplicate themselves automati-
cally in order to keep for example a minimum number of instances
available at any time.

3.4 Dynamic interfaces

Another powerful CORBA feature not found in the DSA is the abil-
ity to use dynamic interfaces. Two mechanisms, DII (DynamicIn-
terface Invocation, shown on figure 2) and DSI (Dynamic Skeleton
Interface), can be used to register a class by describing itsmeth-
ods using their names and signatures, and to build a call to those
methods dynamically.

The most obvious advantage is that the interface does not need
to be present at compilation time. For example, a calculatorap-
plication can be enriched at run time by adding new functions(as
remote objects designed by their names) that are called dynami-
cally as the user types names them. Explicit static calls to those
functions do not appear anywhere in the calculator source code.

The introduction of such a mechanism in the DSA would con-
siderably ease the interfacing with CORBA, as both side could in-
terface with each other using this protocol.

3.5 Quality of Service

On a completely unrelated topic, a useful extension to the exist-
ing DSA specification would be the introduction of Quality ofSer-
vice (QoS) parameters. For the reader unfamiliar with this notion,
a QoS specification may be seen as a numeric value quantifying
some properties of the underlying network, for example the maxi-
mum delay between a request emission date and its handling onthe
receiver side, or a guaranteed bit rate from one partition toanother.

As the requests for quality of service depend heavily on the
location of every service, it makes more sense to include allthe
QoS related information into the configuration file describing the
distributed application rather than in the subprogram specification
itself. To this purpose, we intend to propose the format of the gnat-
dist (our partitioning tool) command file as a standard for describ-
ing Ada distributed applications. This file format will firstbe ex-
tended to contain the necessary QoS extensions, as shown in sam-
ple 3.5.

Sample 1 gnatdist extension for QoSconfiguration Demo is
 P1, P2 : partition;
 C : channel := (P1, P2);

 for C’Bandwidth use 1_000_000;
 for C’Peak use 2_000_000;
 for C’Max_Peak use 5.0;
 −− Require up to 1Mbit/s for normal execution,
 −− with peaks up to 2Mbits/s for a maximum of
 −− 5 seconds.
[...]
end Demo;

3.5.1 Network characteristics

It is common knowledge that QoS and crude packet switching net-
works do not mix well, as the transmission time of a data fragment
is unrelated to the transmission time of other fragments compos-
ing the same high-level packet. Unfortunately, packet switching
networks are very common both in the industry and in universities
(TCP/IP over Ethernet).

The introduction of the new IP revision (IPv6, previously called
IPng) [5] adds the notion of traffic class. This field, presentin every

81

www.manaraa.com

IPv6 packet, is used by all the routers on a given path to prioritize
the flow accordingly to a predefined policy. Within an organization,
it is be possible to setup all the routers to exchange data between
two partitions at the highest possible priority, thus obtaining the
speed and the bandwidth of the slowest physical link on the data
path.

However, this solution is only applicable to a company network,
as the company system administrator does not control the routing
and priority handling policies on external routers. The useof ATM
(Asynchronous Transfer Mode) networks by Internet providers can
help develop such a priority scheme between distant sites. Those
networks can negotiate a guaranteed bandwidth for a complete vir-
tual circuit. Once the required bandwidth has been allocated, it
will never be used for something else unless the resource hasbeen
explicitly released.

We have already developed a binding between Ada and ATM
[16], which is being integrated in AdaSockets6, one of our free soft-
ware products. The ultimate goal is to offer the ability to use ATM
as the underlying networking protocol for GLADE. We are work-
ing on defining a syntax for the indication of the desired networking
resources, that could be applied to IPv6, ATM and other protocols
dealing with resource reservations such as RSVP [2].

3.5.2 Priority related enhancements

One of the most needed enhancements of the DSA would be a spec-
ification of how priorities in partitions of an Ada distributed pro-
gram are related to each other. Right now, it is unspecified whether
the priority of the caller will be used or not for executing the remote
subprogram. This is even worse as the various partitions mayhave
different scheduling policies and priority ranges, thus leading to a
malfunction if priorities are propagated over the network.

We have integrated new pragmas in the GLADE configuration
file to statically describe the behavior of incoming calls. For exam-
ple, one can set an upper limit of the number of incoming remote
calls that can be executing at the same time. Also, a common prior-
ity map is used on all the partitions to transform the caller priority
into an acceptable priority for the receiver, if the user chooses to do
so (a flag in the configuration file toggles this). This method eases
the scheduling computation in a distributed application using Rate
Monotonic Scheduling techniques [25].

4 Conclusions

We have shown in this paper that the Distributed Systems Annex of
Ada 95 is well defined and consistent with the rest of the language,
but would benefit from a standardization of the protocol usedto
communicate between the partitions. This standardizationwould
ease the development of Ada distributed applications usingdiffer-
ent Ada compilers, and would open the world of distributed Ada to
other languages, without loosing any of the Ada safety and security.

Despite those (hopefully constructive) criticisms, we firmly be-
lieve that the presence of the Distributed Systems Annex is amajor
achievement in the language definition. We want to thank again
the design team who chose to make Ada even more powerful and
user-friendly by including the DSA in the ISO standard.

References

[1] F. Azavant, J.-M. Cottin, L. Kubler, V. Niebel, and S. Ponce.
AdaBroker, using OmniORB2 from Ada. Technical report,
ENST Paris, March 1999.

6http://www.infres.enst.fr/ANC/

[2] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Re-
source ReSerVation Protocol (RSVP) – Version 1 Functional
Specification. Technical report, The Internet Society, Septem-
ber 1997. RFC 2205.

[3] D. Cannazzi. yaRTI, an Ada 95 HLA Run Time Infrastruc-
ture. InProceedings of AdaEurope’99, Santander, Spain, June
1999.

[4] J. Davis. The Power is Out There.Business 2.0, pages 102–
104, 1998.

[5] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. Technical report, The Internet Society, Decem-
ber 1998. RFC 2460.

[6] E. W. Dijkstra and C. S. Scholten. Termination detection
for diffusing computations.Information Processing Letters,
11(1):1–4, Aug. 1980.

[7] N. Francez. Distributed termination.ACM Transactions
on Programming Languages and Systems, 2(1):42–55, Jan.
1980. See also corrections [?] and remarks [?, ?].

[8] A. Gargaro, S. J. Goldsack, C. Goldthorpe, D. Ostermiller,
P. Rogers, and R. A. Volz. Towards Distributed Systems
in Ada 9X. In Proceedings of the Conference for Industry,
Academia and Government, pages 49–54, New York, NY,
USA, Nov. 1992. ACM Press.

[9] A. Gargaro, Y. Kermarrec, L. Pautet, and S. Tardieu. PARIS:
Partitionned Ada for Remotely Invoked Services. InProceed-
ings of AdaEurope’95, Frankfurt, Germany, Mar. 1995.

[10] T. Gingold. BROCA: an Ada Object Request Broker. Mas-
ter’s thesis, École Nationale Supérieure des Télécommunica-
tions, July 1999.

[11] ISO. Information Technology – Programming Languages –
Ada. ISO, Feb. 1995. ISO/IEC/ANSI 8652:1995.

[12] ISO. Information Technology – Programming Languages –
Ada Semantic Interface Specification (ASIS). ISO, 1998.

[13] Y. Kermarrec. CORBA vs. Ada 95 DSA – A programmer’s
view. InProceedings of SigAda’99, Redondo Beach, Califor-
nia, USA, Oct. 1999.

[14] Y. Kermarrec, L. Nana, and L. Pautet. GNATDIST: a config-
uration language for distributed Ada 95 applications. InPro-
ceedings of Tri-Ada’96, Philadelphia, Pennsylvania, USA,
1996.

[15] Y. Kermarrec, L. Pautet, and S. Tardieu. GARLIC: Generic
Ada Reusable Library for Interpartition Communication. In
Proceedings Tri-Ada’95, Anaheim, California, USA, 1995.
ACM.

[16] R. Labelle. Interface ATM pour Ada. Master thesis, École
Nationale Supérieure des Télécommunications, July 1999.

[17] F. Mattern. Algorithms for distributed termination detection.
Distributed Computing, 2(3):161–175, 1987.

[18] S. A. Moody. Object-oriented real-time systems using ahy-
brid distributed model of Ada 95’s built-in DSA capability
(Distributed Systems Annex-E) and CORBA.ACM SIGADA
Ada Letters, 17(5):71–76, Sept./Oct. 1997.

[19] OMG, editor. The Common Object Request Broker: Archi-
tecture and Specification, revision 2.2. OMG, February 1998.
OMG Technical Document formal/98-07-01.

82

www.manaraa.com

[20] I. L. Patton. Impact of Using the Ada 95 Distributed An-
nex vs. CORBA on the Development of a Distributed System.
Master’s thesis, George Mason University, Fairfax, Virginia,
USA, June/Aug. 1998.

[21] L. Pautet, T. Quinot, and S. Tardieu. CORBA & DSA: Di-
vorce or Marriage? InProceedings of AdaEurope’99, San-
tander, Spain, June 1999.

[22] L. Pautet, T. Quinot, and S. Tardieu. CORBA and CORBA
Services for DSA. InProceedings of SigAda’99, Redondo
Beach, California, USA, Oct. 1999.

[23] T. Quinot. Mapping the Ada 95 Distributed Systems Annex
to OMG IDL – Specification and implementation. Master’s
thesis, École Nationale Supérieure des Télécommunications,
July 1999.

[24] J. D. Riley. A comparison of two approaches to distributed
application development in Ada: The distributed system an-
nex and CORBA. InProceedings of the TRI-Ada Conference,
pages 73–82, new York, Dec. 3–7 1996. ACM Press.

[25] J. A. Stankovic and K. Ramamritham.Advances in Real-Time
Systems. IEEE Computer Society Press, 1993.

[26] A. S. Tanenbaum.Modern Operating Systems. Prentice-Hall,
1992.

83

